Experimental Investigation of Angular Stackgram Filtering for Noise Reduction of SPECT Projection Data: Study with Linear and Nonlinear Filters

نویسندگان

  • Antti P. Happonen
  • Matti O. Koskinen
چکیده

We discuss data filtering prior to image reconstruction. For this kind of filtering, the radial direction of the sinogram is routinely employed. Recently, we have introduced an alternative approach to sinogram data processing, exploiting the angular information in a novel way. This new stackgram representation can be regarded as an intermediate form of the sinogram and image domains. In this experimental study, we compare the radial sinogram and angular stackgram filtering methods using physical SPECT phantoms. Our study is carried out by employing simple linear and nonlinear filters with ten different Gaussian kernels, in order to provide a comparable investigation. According to our results, angular stackgram filtering with the nonlinear filters provides the best resolution-noise tradeoff of the compared methods. Besides, stackgram filtering with these filters seems to preserve the resolution in an exceptional way. Visually, noise in the reconstructed images after stackgram filtering appears more "powdery" in comparison with radial sinogram filtering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Sinogram and Stackgram Domain Filtering Methods Employing L-Filters for Noise Reduction of Tomographic Data

A sinogram is image representation of raw data obtained from projections of the object for image reconstruction. Radial sinogram domain filtering, i.e. filtering along the projections of the sinogram, is a common noise reduction technique for the data. The stackgram domain, in which the signals along the sinusoidal trajectories of the sinogram can be processed separately, is a new method for si...

متن کامل

Utilization of an optimum low-pass filter during filtered back-projection in the reconstruction of single photon emission computed tomography images of small structures

Introduction:Low-pass filters eliminate noise, and accordingly improve the quality of filtered back-projection (FBP) in the reconstruction of single photon emission computed tomography (SPECT) images. This study aimed at selection of an optimum low-pass filter for FBP reconstruction of SPECT images of small structures. Material and Methods:Sp...

متن کامل

Qualitative evaluation of filter function in brain SPECT [Persian]

Introduction: Filtering can greatly affect the quality of clinical images. Determining the best filter and the proper degree of smoothing can help to ensure the most accurate diagnosis. Methods: Forty five patient’s data aquired during brain phantom SPECT studies were reconstructed using filtered back-projection technique. The ramp, Shepp-Logan, Cosine, Hamming, Hanning, Butterworth, Metz...

متن کامل

Circular Mean Filtering For Textures Noise Reduction

In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Biomedical Imaging

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007